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S/2

Ors

€r, €g, €z
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3H

DEFINITION OF SYMBOLS

Yield point in Shear

Radial, circumferential, axial stresses
Radial, circumferential, axial strains
A function used in Hencky's theory

Y/H

Bulk modulus of elasticity (corresponding to 3«
in Ref. 4

Young's modulus of elasticity
Modulus of rigidity
Poisson's ratio

A numerical constant denoting the exponent of a
simple power function

(variable) radius at a point of the cylinder

Inner radius of the cylinder

Outer radius of the cylinder

Radius of elastic-plastic interface

r/r,

A function used in the modified criterion of yielding

Constants of integration

Other symbols will be defined as they appear in the text.
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STRESS AND STRAIN DISTRIBUTIONS IN A
THICK-WALLED CYLINDER OF STRAIN-HARDENING MATERIAL
ELASTIC-PLASTICALLY STRAINED BY INTERNAL PRESSURE

By C. K. Liu*
George C. Marshall Space Flight Center

SUMMARY
}(A*n attempt is made to extend Allen and Sopwith's solution for an
elastic-plastic thick-walled cylinder of ideally plastic material to
strain-hardening material. Tresca's criterion of yielding is modified
so that the effective stress (usually considered a function of the
effective strain) is proportional to a simple power function of the radius
in the plastic zone. An analysis of Allen and Sopwith's solution for
ideally plastic material seems to support and justify the proposed
modification of the yielding criterion| The exponent of the power &~
function is taken as -3/2, -5/4, -1, and -1/2, in each case yielding
an analytic solution corresponding to a particular strain-hardening
material. Examples worked are for the case of plane strain and for
a ratio of outer to inner radii of 2.0, When the exponent is taken to
be zero, the solution becomes identical to that of Allen and Sopwith.
For exponents other than the five mentioned above, numerical or
graphical methods of integration may be used.

INTRODUCTION

During the past two decades many solutions have been presented
for the problem of plastically strained thick-walled cylinders. Because
of different philosophies and purposes of the originators, some solutions
emphasize the practical aspects of the problem (REF. 1, 2, 3); others
are elegant in their mathematical operations (REF. 4, 5, 6); some are
analytical (REF. 5, 6), and others numerical (REF. 7, 8, 9).

For engineering applications and for mathematical expediency,
the authors impose various end conditions on the cylinder, or they
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hypothesize that the material is incompressible. In some cases, where
plastic yielding is predominant, the material is considered as being
plastic-rigid. Moreover, the solutions also differ ‘as the material is

- assumed to strain-harden or to be ideally plastic.

Steele (REF. 6) presented a solution to this problem in closed and
simple form. It is based on Hencky's total plastic strain theory,
Tresca's yielding criterion, and the assumption that the material is
incompressible in the elastic state. In assuming this, Steele postulates
that across the entire thickness of the cylinder (in both the elastic and
plastic zones) the strain decreases in inverse proportion to a function
of the square of the radius at which the strain is sought.

Earlier, Allen and Sopwith (REF. 4) effected an analytical solution
to the problem. Since they include the compressibility of the material
in the elastic zone, their solution is more rigorous mathematically,
physically sound, and reasonably convenient to apply. Yet, it does
not have provisions to take into account the strain-hardening property
of the material. The solution in this report extends Allen and Sopwith's
solution to strain-hardening material by using a modified Tresca
criterion of yielding.

As shown by Hill, Lee and Tupper (REF. 7), the more exact theory
governing the stress-strain relationship in the plastic region is the
so-called "incremental theory' of which Hencky's total strain theory
is a special case. The latter however, is the form used in the vast
majority of work on plasticity (REF. 4). Furthermore, the solution
obtained by applying Hencky's theory is a close approximation to that
obtained by the more exact’'theory (REF. 9). It is probable that these
authors (REF. 2, 3, 5, 9), as well as Allen and Sopwith, have used
Hencky's theory for no other reason than mathematical simplicity.

METHOD OF SOLUTION
The compressibility of the material can be expressed as follows:

€ + €g + €2z = 3H (0'r+ og + 0,) (1)

_1l -2y

where H
: 3E



By Hencky's total strain theory, the following relationship between
the plastic strain and stress is postulated:

€g -
6 -fr _ fr -€z _ € - ¢€g

= 3Y (2)

Tq - -
e ~r 0 -0y o, -0p

Tresca's yielding criterion is modified here as follows:

p-%r= St (3)

where f is a certain function dependent on the strain-hardening
property of the material. This function (f) must assume a value of
unity when the strain-hardening effect of the material is absent, or
when plastic yielding is impending.

Continuity at elastic-plastic interface, in addition to the given
conditions at the inner and outer cylinder surfaces, provides the
necessary equations from which the stresses may be determined.
These conditions are:

op]elastic = o,| plastic at w = n
Cg -~ Or = S at w = n
(4)
oy = O at w = Kk
or = -P at w = 1

The stress distribution in the elastic zone is given by the Lame
solution, that is,

o'r=A_

(5)

g = A +




In the plastic zone ( 1 = w £ n), the stresses are found from the
equation of equilibrium

hence,

do'r
dw

oy = sf-:—ldw+c

w = 0g- Op = S f

0g = S[f+/~f—dW]+ C
W

(8)

(9)

Applying boundary conditions (4) the constants A, B, and C are

found to be
2
A =22
2 x
B =§n2

(10)

(11)

(12)

Hence, the stresses across the thickness of the cylinder (FIG 1), are
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FIGURE 1. AN INFINITE HOLLOW CYLINDER ELASTIC-PLASTICALLY
STRAINED BY INTERNAL PRESSURE
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to be determined later

The internal pressure (p) can be found from condition (4) as

1 2 2
_P_=f_f_dw__k__.-_n (15)
S h W

From the condition of compressibility (1) and Hencky's total strain
theory (2), the strain in the plastic zone can be expressed in terms of
the functionY and the stresses given by equations (13) and (14).

[]]

(H+2Y)o, + (H-Y) (o, + og) (16)
(H+2Y)or + (H=Y) b, + op) (17)
(H+2Y)og + (H=Y) (o, + 0) (18)



Rewriting, equation (16) becomes

€ H-Y
U'ZZ Z -
H+2Y H+2Y

o + o) (19)

Substitution of equation (14) into (19) gives

€ H-Y W ¢ 2 2
o, = Z - - n‘ - k
Z° H+2Y - H+2Y [“2_{ - W=7 ] s (20)

Consequently, the three components of strain are

H - 3
Y. +S[Y(2H+Y) ;

€, = ———
© " H+2v H+2Y
9HY w f n2 - k2
e — - 21
H + 2V (n w R !
TS H+2Y % 1 H+2Y
W .
9HY f f n? - k2\{
¥ H+2Y<n w Wt TR )] (22)
€, = constant, to be determined from the end condition of the
cylinder (23)

To further investigate the relationship among fhe strains and the
function f, it is necessary to apply the equation of compatibility

(24)

The following equation is obtained after equations (21) and (22) are
substituted into equation (24)
dw df dy 1 He
—— — D em—— -_
(H + 2Y) (2H +Y) (Zw + f> v [f -——ﬁs

W
2 f n? - k2 2 2
- 3H ([ - dw + ——2-k—2——>- 2(H" + HY + Y*) (25)




Now, if f =1 in equation (25) and we write

-1 n? 2 ¢
x2 H, _;f_ = 2 ln{w/n) + = "3 -S_%I- (26)

it is found that equation (25) reduces to

dy 3y - 3x
£+x(x-1)(x+3) (x - 1} (x + 3)

(27)

Equation (27) is identical to that of Allen and Sopwith (REF. 4, p. 70)
for an ideally plastic material. Its solution is found as

2
€, n 1

In(w/n) = 35 - 532

3k2-SH1+3 1
1 + 12GH

1/4
tan™'u - tanh”'u ) tan—l<———l——)/
t(tan"u - tanh ‘u 1 + 12GH

( 1 \ 1/4]
-1 .
- tanh Jm)« (28)

u-< Y )1/4 CH 1 -2y
“\Y - 2H T 6(1 +v)

! 3/4
3u 3 2 (3n2 2¢, )(1 + 12GH>
3

where

i

For convenience in later computations, it is assumed that €z =0
(that is, the cylinder has clamped ends) and that v = 1/3. Thus,
equation (28) is simplified greatly:



4 774 n? 1/4
Inlw/n) = - gr + g {@) O
- tanh™'(2/3) 1/4] + (tan”'u - tanh"u)} (29)

Equation (29) correlates the quantities w/n and u (or Y, in turn)
in a transcendental manner. The term n/k appears to be a parameter
that may or may not affect the (w/n) versus Y relationship appreciably.
To determine this, w/n is plotted against Y/H (= ¢) in FIG 2 for a
series of values of n/k: 1.0, 0.875, 0.750, 0.625, 0.500. In the
actual cylinder, w lies between 1 and n in the plastic zone. The
corresponding range of w/n is 1/nto 1. Hence the plot of Y versus
w/n for a particular value of n/k has physical significance only when
" w/n is within the range [1/ k(n/k)] to 1. This is the way to determine
the range of interest of w/n for any choice of k.

In this report the case of k = 2 is considered. It is found that
while n/k varies from 1 to 0.5, the maximum range of variation in
w/n never exceeds 0.37 percent. With the scale of plotting used in
FIG 2, it is difficult to distinguish these four curves, one overlapping
whose relationship with Y is not appreciably affected by a change in the
value of n for a given value of k.

Considering w/n as an independent variable, it may be advantageous
to assume that the function f is a function of w/n only. A possible
form of f may be written as

f = C1(W/n)rrl + Cz(w/n)a + C3(w/n)ﬁ

+ieeeess (12w s n) (30)

where C;, C,, Cy, ....;m, a, B, .... are constants. The purpose
of shaping f in this manner is to simulate the unknown relationship
between w/n and the respective plastic strain. Here, according to
the characteristics of f, it will be necessary that when w/n = 1

Cr + C 4 Cy #uevenvnnnaen =1 (31)
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Let it be further assumed that the constant C, is predominantly

larger than the sum of the rest of the terms, then C; = 1,
C, = C;3 =.... =0and
f = (w/n)™ (32)

With the function f expressed by equation (32), equation (25)

becomes
af (3 +2m) H? + 2mHY + 2m Y?
avy (2 +m) Y (H +2Y) (2H + 2Y¥)
- 2
- m H ez _ 3H<n2 - k
T m +2 Y(2H+Y)(H+2Y)[S 2k’

. l.)] (33)
m

The problem is thus reduced to solving the first order, ordinary

differential equation (33). The solution of equation (33) is

LA 1 +2¢ m [Ez
(_n)"‘_ 2m + 3 2m + 1 m + 2 [SH
2(m + 2) 2(m + 2)
(2 + £

d
1 g 3 + K

2(m +2) 2(m +2)
(1+26)%(2+¢)

(34)
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the constant of integration, is determined

in which ¢ = Y/H, and K',
by the condition: w =n, or f=1, £= 1/(6GH). Thus:
2m + 3 2m + 1
L\ 2(M +2) ! 2(m + 2)
' (6GH> ' ecn .
= 1 m + 2
't 3eH
3 fm+ 2 2
+ |2 4 2 _n
[SH Tz ( m k)].
dg
1 3 (35)
e 2(m + 2) 2(m + 2)
3 (1+2€)%(2 +¢) !
£ T6GH
Consequently. equation (34) becomes
1+ 2¢
2m + 3 2m + 1
A §z(m + 2) 2(m + 2)
™ L "m+2|sB T Tm - ®Z/|®
2m + 3 2m + 1 2m + 3 2m + 1
— 2 4 : (2 +¢)
6GH 6GH
g d gl
L 3 (36)
27 2 . ImiD
(1 +2¢€&)7°(2 +¢)

6GH

12




The evaluation of the integral in equation (36) for the general case
is quite cumbersome, but the integration can be carried out easily if
the exponent m is given particular values, such as -3/2, =5/4, -1,
-1/2, etc. Four solutions corresponding to these four exponents are

given below.
m = -3/2,

w (L+2g (2487 3[%]- %(l + %Z)] (1+2¢) (2+8)"

-3/2
(K) - 1 1 S 3
' (1 * 3GH> <2 * 6GH>

S
£ 22 1 2 1 64 1 37
[1“ 2 T EeE) 9 @HEY 2T (L2 g)] o )
6GH
m = =5/4,
(1 +2£) (2 +¢)
173
-5/4 £
(—V-V—> = - 1 -%[ﬁ_z -2<3+,n_2>:, (1+2£) (2 +£)
" SH ~ 2\5 "% )
(1 +3GH)(Z +6GH> gt/
1 \1/3
6GH
1/3 1/3
4 £ 1 ¢
* 5273r 1 273 (2)1;} 1§'/31/3 73117
nof2]3 ! 2731172
5(3)1/2 Loz 1/3 _(2)1/3 3
2/3
27 (2) (3)1/3(2)1/3 39)

6GH

13
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(1+28) (2 +6) /2

g1/2

¥ 3GH) (2 ¥ 6GH

1/2
€ 3 n?\| (1 +2¢&) (2 +¢£)
H3 (l'+_7)] g 172 .

1+ g+ (£+2) /2

1+ 6GH + (1+12cmi/2 (39
6GH

(2)1/3 + g'1/3
1/2 1/3 1/3 3
Bl an-28 - @) o)
9(2) (2) 13 (3 172 :
tGH



Again, assuming €¢; = 0 for a cylinder with clamped ends, and
v = 1/3 (6GH = 1/4) it is possible to examine the relationship between
w/n and £ for various values of m . In FIG 3, four curves are
plotted so that the effect of m on § can be brought out. It is seen
that the material with m = -3/2 at a fixed value of w/n yields the
smallest value of £ among the four materials. Note that fixed value
of n corresponds to a fixed magnitude of the internal pressure (p)
through equation (15). In FIG 2, a dimensionless plot is shown for the
relationship between £ and w/n for various values of n/k. The
single curve shown is actually four curves of different lengths over-
lapping one another.

With the interdependence between (w/n)™ and £ determined, it
is possible to check back to see what degree of strain-hardening each
value of m represents. From the yielding criterion (3) it is assumed

R Lk (3)

and from Hencky's total strain theory (2),

o - ‘r = 3Y (2)
0'6 - or

Combining equations (3) and (2),

‘o - _fr _ 3Y ¢ _
s o -3Hf—3§f (41)

For certain values of m, £ and f are related to each other
according to the curves in FIG 3. Hence, by plotting f against 3§f,
a dimensionless stress-strain diagram of this particular material can
be obtained. Four curves of this kind, including that for an ideally
plastic material (m =0, are shown in FIG 4.
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Once the exponent of strain-hardening of a cylinder material is
selected by comparing its dimensionless stress-strain diagram with
the curves in FIG 4, the stress and strain distributions across the
cylinder radius can be readily determined from equations (13), (14),
(19), (21) and (22). The stress distributions in cylinders made of four
different materials (m = 0, -1/2, -1, -3/2) for a degree of yielding
of n =2, are plotted in FIG 5. The cylinder used in the illustrative
example has an outside radius twice as large as its inner radius, in
other words, k = 2.

A comparison between equation (19) and the third of equations (13)
shows that the factor

has characteristics similar to that of the Poisson's ratio, v. This
factor assumes a value of 1/3 when £ = 4, and approaches the value
of 1/2 when § — .

CONC LUSIONS

Allen and Sopwith's solution for the thick-walled cylinder problem-
for an ideally plastic material was extended to strain-hardening
material by introducing a strain-hardening function to the Tresca's
criterion of plastic yielding. This strain-hardening function is assumed
to have the form of a simple power function of the dimensionless radius
in the plastic zone. The exponent of this simple power function may
have different constant values, fractional or integral, depending on the
strain-hardening property of the material concerned. As demonstrated
in the foregoing analysis, the solution to this problem is in analytical
and closed form if this exponential constant is equal to -3/2, -5/4, -1,
-1/2 and 0. These exponents correspond to five materials with different
strain-hardening characteristics similar to those observed in metals.
Since the case of zero exponent coincides with that of Allen and Sopwith's
ideally plastic material, their relative degree of strain-hardening can be
compared by examining the curves in FIG 4, where the dimensionless
quantities of maximum shearing stress and strain are plotted as
ordinate and abscissa.

17
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FIGURE 5. FULLY PLASTIC STRESS DISTRIBUTION IN AN INFINITE
HOLLOW CYLINDER STRAINED BY INTERNAL PRESSURE
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The assumption that the maximum shearing stress (effective stress)
is proportional to a simple power function of the radius has been deduced
from the solution of Allen and Sopwith as reasonable for engineering
applications. Examination reveals that the value of this simple power
function at any radius in the plastic zone is not appreciably affected by
the amount of yielding that has penetrated beyond that redius. Within
the realm of engineering significance and application, the example
shown in this report (k = 2) seems to strengthen this assumption.

For exponents other than the five mentioned above, the integration
involved may become very tedious for analytical solutions. In those
cases, graphical or numerical processes may be used.

Although the cylinder used in the illustrative example was assumed
to have clamped ends, this was mainly for the convenience of computation
and is not a limitation of the theory.
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